Category Archives: Blogging

Coronavirus Primer, Part 1: Background

Color-enhanced but real image of viruses (green) infecting a human cell (blue) 1
 

I. About This Primer

II. Viruses

III. Coronaviruses

IV. Citations

I. About This Primer

Without a doubt, the biggest story of 2020 is the coronavirus epidemic. 1 By the middle of the year, I, like many others out there, felt overwhelmed in a muddle of fragmented news and science, misinformation, and general confusion.  I announced on Facebook that I wanted to “digest it all” and assemble the best known information into one primer.  “Any questions you’d like me to research?” I asked, and a few friends immediately chimed in with requests.  Hopefully, this will help us understand coronavirus basics from the ground up.  I will begin this primer with the big picture and then gradually zoom in from viruses to coronaviruses to this year’s unwanted pests.  There is far too much ground to cover in one article, so I’m breaking it into multiple parts.  Today’s post is Part 1:  Background.  This article discusses viruses and coronaviruses in general. 

II. Viruses

A. Square One: What is a Virus, Anyway?

B. Infection, Immunity, Inoculation

C. Human Viral Diseases

D. Measuring Epidemics

E. Treatment Options

A. Square One: What is a Virus, Anyway?

Viruses occupy one of the most intriguing positions in the whole grand scheme of things.  They are microbes right at the boundary of life and non-living chemistry.  This makes them primary subjects of interest for scientists studying the origins of life.      

You are made of about 30 trillion cells. 2 We call a cell the smallest unit of life because it performs all the functions that we expect of a living thing.  A cell grows, responds to stimuli, metabolizes, heals, sustains and defends itself, reproduces, and dies.  However, it is not a unitary blob of spittle.  A cell is a complex system with hundreds of interacting parts, with names like macromolecules and organelles.  Most of those parts specialize in just one life function, so by themselves they are not fully alive.  If I could compare a virus to anything else, I’d say it’s like a cell organelle that specializes in reproduction. 

Viruses are like living things in numerous ways.  They are made of the same basic macromolecules as us:  nucleic acids, proteins, lipids, and carbohydrates.  At the core of every virus is a bundle of DNA or RNA comprising a few genes.  Viruses reproduce and evolve / speciate.  Biologists classify them and give them Latinesque scientific names.  Viruses can be “killed” by heat, chemicals, or radiation.             

However, viruses are like lifeless chemicals in that they don’t metabolize, respond, heal, change, or grow.  Nor are they able to protect themselves from the environment.  And although viruses specialize in just one thing – reproduction – they can’t even do that by themselves.  A virus is an absolute parasite.  In order to function, it must inhabit a living cell.  The “life” cycle of a virus is to invade a cell and exploit the cell’s resources to make dozens of copies of itself, which then burst forth to invade other cells.  Viruses infect the cells of all living things, from bacteria to whales.  They kill more life forms, and more humans, than any other force of nature.

B. Infection, Immunity, Inoculation

While some viruses are harmless or even beneficial, most of them cause irreparable or fatal damage to their host cells.  Rapidly reproducing viruses consume a cell completely and then burst out like a battalion of creepy little microscopic robots.  Since they are vulnerable outside of cells, they must pass quickly from dying cell to living cell.  They can pass from one person to another through skin, body fluids, or air currents.

Viral infection involves proteins on the surfaces of viruses and cells.  Proteins have complex three-dimensional shapes like locks and keys.  If a virus has the protein “key” to a cell’s outer “lock”, it will latch on and inject its genes inside.

In a human or animal body, fragments of viruses called antigens react with our white blood cells, aka our immune system.  In lucky cases, the immune system produces a protein called an antibody, a natural defense.  An antibody latches onto the antigen that stimulated it.  Sometimes, the antibody disfigures the virus’s “key” so that the virus can no longer penetrate cells.  Other antibodies “flag” a virus so that white blood cells can easily identify and destroy it.  While a person has an antibody in his blood, he is immune to that virus.  The next time the virus comes along, his antibodies will latch onto the virus’s antigens and slow it down or stop it.  Some antibodies last a lifetime, while others disappear from the bloodstream in a few years.  A vaccine is a human-made, finely tuned dose of antigens – just enough to stimulate an immune response without a full-blown infection.  If enough people in a community become immune to the virus, whether through natural immunity or vaccine inoculation, the virus begins to die out and can even go extinct.             

It’s important to note that viruses evolve quickly.  This is especially true of RNA viruses, which most human viruses are.  When a virus evolves, its proteins can change shape.  That is a headache for us; we are forced to keep reinventing new locks to morphing viral keys.  Occasionally, a virus that infects one animal will evolve to a new form that infects another animal, including humans.  A virus that jumps ship from one species of host to another is called zoonotic.

C. Human Viral Diseases

A viral disease is not quite the same as the virus that causes it.  A disease is the physical manifestation of the virus, its effects on the person.  Sometimes a virus and its disease have different names, as HIV (Human Immunodeficiency Virus) causes AIDS (Acquired Immuno-Deficiency Syndrome).  In other cases, we use a single term, like “Ebola”, to name both the virus and its disease.  There are too many human disease-causing viruses to list here.  Examples include adenoviruses, astroviruses, encephalitis, enteroviruses, hepatitis, herpes, HPV, influenza, measles, meningitis, mumps, noroviruses, parainfluenza, polio, pox, rabies, rhinoviruses (which cause colds), roseola, rotaviruses, rubella, West Nile, Zika, … you get the picture.

D. Measuring Epidemics

Viruses are inherently public health threats.  Human viruses would quickly die out if they did not have lots and lots of people to infect. Viral infections can be quantified in numerous ways. The three most fundamental independent metrics are reproduction number, transmission time, and case-fatality rate.

Reproduction number is commonly abbreviated as R0.  It measures the average number of healthy persons who catch the virus from each infected person.  For example, if each sick person makes four other people sick, then R0 = 4. 

Transmission time is the average time it takes a virus to spread from one person to another.  I don’t see this factor discussed very often, but it makes a big difference whether a sick person infects others in a matter of hours (like an airborne virus in a mall) or years (like a sexually transmitted virus). 

Finally, the infection-fatality rate is the most morbid statistic of them all: the percentage of infected persons who die.  The number of serious illnesses or hospitalizations may be measured as well; they will be closely correlated to the fatality rate.

Unfortunately, the fundamental metrics above are difficult to measure.  We can’t measure them all in a lab because they are not entirely intrinsic to the virus.  They depend on human activity too.  It’s hard to know how many people are infected when not everyone is tested and / or exhibiting symptoms. 

The easiest way to measure the severity of an epidemic is with the number of deaths and / or hospitalizations.  These numbers are documented well.  There will still always be some over-reporting (deaths attributed to the virus that were really due to something else) and under-reporting (deaths due to the virus that weren’t counted).  On a societal level, sheer numbers are more meaningful than rates.  It doesn’t really matter if there are 1,000 infections that are 10% fatal or 10,000 infections that are 1% fatal.  Both scenarios will result in 100 deaths and should be considered equally dangerous.  Of course, if you get infected, you sure will be interested in knowing if you have a 1% or 10% chance of dying!

Taken together, the reproduction number and transmission time determine the doubling time, or the amount of time it takes for the prevalence of infections to double in the population.  The pattern characterized by a constant doubling time is called exponential growth.  In real life, exponential growth never lasts long, because it runs up against limitations like immunity or finite populations.  Doubling time is the metric we hear most on the news, because it is easy to calculate by simply counting cases.  Breaking it down offers slightly more insight, if only theoretically.  When doubling time increases, it demonstrates that each sick person is infecting fewer healthy people and / or she’s doing so more slowly, which are the intended effects of social distancing.

When doubling time slows down (as it always must) the simplest model for epidemic growth is the logistic formula.  This S-shaped curve represents the all-time number of cases “flattening” as it reaches its maximum and stops growing.  The point where the number of daily cases starts to decrease is the point of inflection.  I hear some people using the term “inflection point” as if it means the point where a virus “really takes off”.  That’s the opposite of the correct meaning, and there is no well-defined point of acceleration on the curve.

Real epidemiologists use sophisticated numerical algorithms that model the interactions among Susceptible, Immune, and Recovered people.  These SIR  or compartmentalized models are run on supercomputers.

The logistic curve, unlike exponential growth, models the “flattening” or maxing out that must eventually occur.  The inflection point is where growth starts to slow down; it is shown at (5, 50) on this example. 3

E. Treatment Options

Besides vaccines, there are at least two medical options for some viral infections.

Antiviral drugs kill viruses after infection.  Antiviral pharmacology is recent technology.  It is more sophisticated than vaccinations.  To produce an antiviral medicine, researchers sequence the virus’s RNA and proteins and then engineer molecules to target the virus’s vulnerable points.  This highly advanced research developed in response to the AIDS pandemic. 

Each vaccine or antiviral medication is engineered specifically for one strain of virus.  Though the vaccines for polio and smallpox were “miracle cures” that drove their viruses to extinction, they are useless against other viruses.  Medical labs are experienced and pretty effective at making influenza vaccines.  On the other hand, centuries of effort have still yielded no rhinovirus vaccines.

Because vaccines and antivirals are not always available, hospitals must also rely on symptomatic treatments, which only mitigate the disease without managing the virus.  Some drugs treat symptoms such as inflammation (also known as cytokine storm).  In extreme cases, medical equipment like ventilators assist with breathing while the virus passes.

III. Coronaviruses

A. What Coronaviruses Are

B. The First Two Killer Coronaviruses

A. What Coronaviruses Are

Coronaviruses are classified as the family Coronaviridae in the virus family tree.  They get their name from the “spike” proteins, also known as S proteins, embedded in their fatty envelope.  The spikes look like the corona (crown) of the sun, and they are the killer proteins involved in latching onto host cell membranes. 

Coronaviruses have infected bats and birds for tens or hundreds of millions of years. 4 They are occasionally transmitted to other mammalian species that come into contact with bats.  There are now five genera of coronaviruses.  Two of them, Alphacoronavirus and Betacoronavirus, include species that infect humans.  Today’s living alpha- and beta-coronaviruses descend from a common ancestor four or five millennia ago. 5

Some animal diseases that are now recognized as coronavirus infections came to veterinary attention in the early 20th century.  The viruses themselves were only observed and named in the 1960s.  Since then, the medical community has identified seven coronaviruses that infect humans.  Four of them only cause colds.  The three most recent strains, all beta-coronaviruses that evolved in the 21st century, are much more severe.  There are no known treatments for any of them. 

B. The First Two Killer Coronaviruses

The first alarming coronavirus outbreak was the SARS epidemic of 2002 – ’04.  SARS stands for Severe Acute Respiratory Syndrome. 2 The virus that caused it was named SARS-CoV.  The SARS coronavirus originated in horseshoe bats in southern China. 6 It was then apparently transmitted to intermediary species that were sold in exotic animal markets: the palm civet (a wild cat), the raccoon dog (a wild dog), and / or the ferret badger.  All of these species carried SARS-CoV-like viruses.  The exact pathway from bat to carrier to human has not yet been solved.   

SARS had a high case-fatality rate, about 10%.  It was easy to detect infected people, though, because almost everybody who caught it broke out into fever and coughs within 2 – 3 days.  The sick were quickly quarantined and questioned about their most recent contacts, who were also isolated.  Local governments also ordered a mass killing of palm civets. 7 Even without a vaccine or anti-viral remedy, the anti-SARS campaign was a complete success.  Only 8,000 people ever caught this disease.  Canada was the only non-Asian country with more than one death.  Curiously, just like COVID-19, SARS barely touched Africa.  The peak of the outbreak lasted just a few months, February – July 2003.  The onset of summer weather slowed it down.  By 2004, SARS-CoV was extinct. 

Living in a world city, Los Angeles, I have long noticed Chinese nationals wearing face masks all the time, and I always wondered why.  It’s the SARS outbreak that got them in the habit, and many have worn masks routinely ever since 2003.  It doesn’t seem so unusual anymore!

The next major coronavirus outbreak was called MERS (Middle East Respiratory Syndrome) because it was concentrated in Saudi Arabia and neighboring countries.  The MERS virus passed from bats to camels in the 1990s and then to people who made close contact with camels in 2012.  This virus had a distinct profile.  MERS had a much higher case-fatality ratio.  30 – 35% of the patients who caught it died!  Fortunately, it did not easily pass from one person to another.  The MERS virus still exists, but it has only killed 900 people, just a few each year now. 

In 2017, the scientists who traced SARS-CoV to a bat cave in Yunnan Province observed that the viruses were recombining (intermixing) to form myriad new combinations.  Their discussion included this prophetic warning:

“We have also revealed that various SARSr-CoVs … are still circulating among bats in this region.  Thus, the risk of spillover into people and emergence of a disease similar to SARS is possible.” 8

Ben Hu (2017)

Continue to Coronavirus Primer Part 2: SARS-CoV-2, COVID-19, and the Individual

IV. Citations

  1. Photo Credit: C. GoldsmithContent Providers: CDC/ C. Goldsmith, P. Feorino, E. L. Palmer, W. R. McManus / Public domain.  https://commons.wikimedia.org/wiki/File:HIV-budding-Color.jpg (accessed and saved 6/23/20).
  2. Ron Sender, Shai Fuchs, and Ron Milo, “Revised Estimates for the Number of Human and Bacteria Cells in the Body”, PLOS Biology (8/19/2016), https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1002533 (accessed 7/06/20).
  3. Logistic curve by Yapparina / CC0, https://commons.wikimedia.org/wiki/File:Logistic_curve,_r%3D1,_K%3D100,_N0%3D1.png (accessed 7/07/20).
  4. Joel O. Wertheim et al., “A Case for the Ancient Origin of Coronaviruses”, Journal of Virology 87(12):7039-45 (June, 2013), https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3676139/ (accessed and saved 6/25/20).
  5. Patrick C.Y. Woo et al., “Discovery of Seven Novel Mammalian and Avian Coronaviruses in the Genus Deltacoronavirus Supports Bat Coronaviruses as the Gene Source of Alphacoronavirus and Betacoronavirus and Avian Coronaviruses as the Gene Source of Gammacoronavirus and Deltacoronavirus”, Journal of Virology 86(7):3995-4008 (Apr., 2012), https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3302495/ (accessed and saved 6/25/20).
  6. Ben Hu et al., “Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insight into the origin of SARS coronavirus”, PLOS Pathogens 13(11):e1006698 (11/30/2017), https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1006698 (accessed and saved 6/25/20).
  7. Jane Parry, “WHO queries culling of civet cats”, BMJ 328(7432):128 (1/17/2004), https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1150312/ (accessed and saved 7/03/20).
  8. Hu (2017), op. cit., “Discussion”, last paragraph.

We need to stop terror, not just terrorism

img_5575_ed

One of LA’s most intriguing corners symbolizes the nation’s fears and divisions over the War on Terror

This September 11, I feel compelled to write a few words about the War on Terror.  It is an important issue this year as Americans make big choices.  We all know that emotional thinking can cloud judgment – and the War on Terror is one of the most emotional issues of our time.  When you look at it objectively, though, you reach a striking conclusion.  Yes, terrorists are definitely evil.  But in the grand scheme of things, they are not very deadly to Americans.  When you compare the cost of this war to its benefits, it is very hard to justify on its present terms.

American conservatives describe the War on Terror as a “Clash of Cultures”.  This characterization is an ideological belief, not a fact, and it is not productive.  A look at worldwide terrorism deaths reminds us what the fight is really about:  instability within the Moslem world.  Of the roughly 20,000 terrorist deaths worldwide in 2013, a majority of them were in Iraq or Afghanistan.  90% of them occurred in 10 African / Asian countries that are home to terrorist groups.   1 These groups are militias aimed at local governments or other sects.  Most of these groups don’t target outsiders.  ISIS and al Qaeda are the main exceptions.  The US and other countries engage them directly in combat, and they strike back at our civilians.

From 2001 – 2013, the number of Americans killed by terrorist attacks was about 3,000.  Outside of 9/11/01 itself, that number is about 400, and of those only 50 were on US soil. 2 That was a whole decade’s worth of casualties.

By contrast, on a typical day, 90 Americans are killed by guns at home or in the streets – by angry acquaintances, accidents, or suicide. 3  Another 90 Americans are killed in car accidents.  4  The overwhelming majority of preventable deaths in the US – 2,000 per day – are caused by our own stupid decisions to smoke, drink, overeat, and abuse drugs. 5

Terrorism is not even close to our biggest problem.

Nevertheless, more than half of Americans are “very concerned about Islamic extremism.” 6  That’s a higher rate than in Pakistan!  This disconnect is not surprising.  People don’t think with statistics.  We think with emotions.  Lifestyle-related deaths are not as evil or terrifying as terrorist attacks.

The emotionally-driven political response has been vastly out of proportion.  This war has cost trillions of dollars 7 , killed perhaps a million people 8 (wow), and sacrificed 7,000 US soldiers in combat 9 to avenge our 3,000 dead.  Not only that, but ironically most of those 400 American civilian deaths since 2001 have resulted from counterattacks against our War on Terror.

This conflict means less to the US, but more to the world, than most Americans realize.  The US needs to downscale its response, make it more efficient, and share it more evenly with its allies.  Our trillions could be much better spent on intelligence, police, and security.  Better yet, the responsibility and the budget should be spread among many nations.  The global solution to the problem is a very interesting discussion, and beyond the scope of today’s post.

As for the upcoming election, the two presidential candidates, for all their mudslinging and difference in style, have roughly similar platforms on the War on Terror.  Some of the key differences include:

  • Trump has expressed his desire to remove the US from NATO.  This would be counter-productive, as the solution needs to be international.  Trying to shore up the entire Moslem world would stretch America far too thin.  Then again, he has also spoken in favor of coalition support.
  • HIllary Clinton wants to work with Moslem Americans as a “coalition at home”.  10
  • Clinton supports stricter gun control for people on FBI watch lists.
  • Trump wants the US military to grow even larger.  Clinton supports a sustainable military with enhanced cyber capabilities.
  • Trump opposes arming Syrian rebels, and I have to say I agree with him on this one.    Secretary Clinton supported arming them, but Obama tried that and it backfired.  She does not include arming rebels in her presidential platform.

The more serious difference between the candidates and their supporters is their outlook on the conflict.  Trump buys into the “Clash of Cultures” storyline.  He and his voters see ISIS as first and foremost out to get America.  That outlook doesn’t get us any closer to the real problems in West Asia and their solutions.  Trump is riding on the coat tails of American fear, perceiving the terrorist danger as so large that it threatens the entire nation.

FDR said, “The only thing we have to fear is fear itself.”  Yoda was just as wise when he said, “Fear is the path to the dark side.  Fear leads to anger, anger leads to hate, hate leads to suffering.”  For Americans right now, it is just as important to conquer our terror as to conquer the terrorists.

Bad English Habits of the Educated

© Pachai Leknettip | Dreamstime.com - Grade D Plus on NotebookIs English changing, or are people mangling it?  Am I just misinformed or worse – getting old and uptight?  I have noticed a few usages becoming extremely common, which strike me as odd or even rub me the wrong way.  I’m not talking about street slang, either.  I hear these every day among journalists and educated professionals on TV and radio.  Pardon my rant.  What do you think?

The “t” in “often” is silent.  When I was growing up, my teachers adamantly drilled this into our heads.  The word is pronounced “offen,” and there is no such word as “oftentimes!”  Now I routinely hear “off-ten”, “offen-times”, and even the doubly squirmy “off-ten-times.”

To read a quotation out loud, we say, “quote” at the beginning and “end quote” at the end.  “Quote: Ask not what your country can do for you.  Ask what you can do for your country.  End quote.”  Please stop it with the “unquote”, especially at the beginning of the quote!  “Quote unquote that doesn’t make any sense!”

The “H” at the beginning of a “Hu” word is NOT silent!  It annoys me to no end to hear academics talk about umans and their uge civilizations.  When the ell did this become the trendy accent of the year?

The word “forward” has two “r’s” in it!  When did the word become “foe-ward” ?!  :\

It doesn’t make sense to begin an answer with “so”!  “So” is a conjunction.  You state a premise, you say “so”, and then you explain how the premise leads to a conclusion.  Over and over in interviews now, we hear,

Q:  “How does this policy affect blah blah blah … ?.”

A:  “So, there will be a big change in blah blah blah …”

It’s as odd as beginning an answer with “Therefore.”  You have to tell me something before you’ve earned your “so”!

Does anyone remember the lost technique of projecting your voice?  It is understandable to taper off at the end of a sentence.  Now I hear people dropping their voice in the middle of a sentence, and then continuing to rasp airily away for the rest of the whole paragraph.  I’ve heard entire interviews with people that sound like frogs!  The idea of projecting your voice seems not to have reached British schools of broadcast at all.  British speakers have a habit of letting their voice fall to a whisper while on the radio, as if they’re trying to keep a secret from someone across the room.  Speak up!  The worst is when a broadcaster’s voice is so subdued that you can hear her spitty mouth and smacky lips.  >Q

My grammar teachers told us to avoid clichés.  At least some clichés make sense.  “At the end of the day” does not.  I hear it morning, noon, and night, and I still don’t understand what is supposed to be so relevant about the “end” of this proverbial day.

“Ginormous.”  Ha ha, yeah, I get it.  😐  Whoever coined this word, it was clever the first time.  Copying it from someone who copied it from someone who copied that person – sorry, it doesn’t make you clever or funny.

People always refer metaphorically to the “least common denominator” among a broad swath of society, when the mathematical concept they have in mind is the “greatest common factor”.  Remember – a least common denominator is a multiple, a big number.  The least common denominator of a diverse group of people would encompass their full diversity.  The base instincts that are shared by everyone form the greatest common factor.

“Leverage” is a noun, not a verb!  The word “leverage” literally means a multiplication of force gained by using a machine.  It is akin to the word “strength.”  Nobody would ever say, “I am going to strength my advantages to maximize my profits.”

The funny thing is that, while contemplating this blog post, I came across articles from an older perspective.  Apparently, senior citizens wince when youngsters use the word “fun” as an adjective.  “Fun is a noun!” they say righteously.  “You can have fun.  You don’t play a ‘fun game’!”  This opened my eyes, because I had honestly never heard that.  To me, “fun” has always been an adjective.  I guess that it’s a 20th century usage that shifted shortly before my time.  It seems perfectly okay to me.

I am forced to admit, then, that the objective is subjective.

At the end of the day, maybe I should have a better sense of umor, embrace the lowest common denominator, and accept the fact that language moves foeward.